1. Tuning the Fano factor of graphene via Fermi velocity modulation.
    J.R.F. Lima, A.L.R. Barbosa, C.G. Bezerra and L.F.C. PEREIRA.
    Physica E Low-dimensional Systems and Nanostructures 97, 105 (2018).
  2. Borophene hydride: a stiff 2D material with high thermal conductivity and attractive optical and electronic properties.
    B. Mortazavi, M. Makaremi, M. Shahrokhi, M. Raesi, C. Veer Singh, T. Rabczuk and L.F.C. PEREIRA.
    Nanoscale 10, 3759 (2018).
  3. Thermal Conductivity of Graphene-hBN Superlattice Ribbons.
    I.M. Felix and L.F.C. PEREIRA.
    Scientific Reports 8, 2737 (2018).
  4. BxCyNz Hybrid Graphenylene: Stability and Electronic Properties.
    A. Freitas, L.D. Machado, C.G. Bezerra, R.M. Tromer, L.F.C. PEREIRA and S. Azevedo.
    RSC Advances 8, 24847 (2018).


  1. Atomic adsorption on nitrogenated holey graphene.
    R.M. Tromer, M.G.E. da Luz, M.S. Ferreira and L.F.C. PEREIRA.
    The Journal of Physical Chemistry C 121, 3055 (2017).
  2. Thermal conductivity decomposition in two-dimensional materials: Application to graphene.
    Z. Fan, L.F.C. PEREIRA, P. Hirvonen, M.M. Ervasti, K.R. Elder, D. Donadio, T. Ala-Nissila and A. Harju.
    Physical Review B 95, 144309 (2017).
  3. Anomalous strain effect on the thermal conductivity of borophene: a reactive molecular dynamics study.
    B. Mortazavi, Minh-Quy Le, T. Rabczuk and L.F.C. PEREIRA.
    Physica E Low-dimensional Systems and Nanostructures 93, 202 (2017).
  4. Electronic, optical and thermal properties of highly stretchable 2D carbon Ene-yne graphyne.
    B. Mortazavi, M. Shahrokhi, T. Rabczuk, L.F.C. PEREIRA.
    Carbon 123, 344 (2017).
  5. Light propagation in quasiperiodic dieletric multilayers separated by graphene.
    C.H. Costa, L.F.C. PEREIRA, C.G. Bezerra.
    Physical Review B 96, 125412 (2017).
  6. Bimodal grain-size scaling of thermal transport in polycrystalline graphene from large-scale molecular dynamics simulations.
    Z. Fan, P. Hirvonen, L.F.C. PEREIRA, M.M. Ervasti, K.R. Elder, D. Donadio, T. Ala-Nissila and A. Harju.
    Nano Letters 17, 5919 (2017).

Independent publications by group members


  1. Amorphized graphene: a stiff material with low thermal conductivity.
    B. Mortazavi, Z. Fan, L.F.C. PEREIRA, A. Harju and T. Rabczuk.
    Carbon 103, 318 (2016).
  2. Thermal conductivity and mechanical properties of nitrogenated holey graphene.
    B. Mortazavi, O. Rahaman, T. Rabczuk and L.F.C. PEREIRA.
    Carbon 106, 1 (2016).
  3. Anisotropic thermal conductivity and mechanical properties of phagraphene: A molecular dynamics study.
    L.F.C. PEREIRA, B. Mortazavi, M. Makaremi and T. Rabczuk.
    RSC Advances 6, 57773 (2016).
  4. Controlling resonant tunneling in graphene via Fermi velocity engineering.
    J.R.F. Lima, L.F.C. PEREIRA and C.G. Bezerra.
    Journal of Applied Physics 119, 244301 (2016).
    Featured on the cover of the Journal of Applied Physics Volume 119 Number 24, dated 28 June 2016.


  1. Tuning thermal transport in ultra-thin silicon membranes by surface nanoscale engineering.
    S. Neogi, J.S. Reparaz, L.F.C. PEREIRA, B. Graczykowski, M.R. Wagner, M. Sledzinska, A. Shchepetov, M. Prunnila, J. Ahopelto, C.M. Sotomayor Torres and D. Donadio.
    ACS Nano 9, 3820 (2015).
  2. Modelling heat conduction in polycrystalline hexagonal boron-nitride films.
    B. Mortazavi, L.F.C. PEREIRA, J.-W. Jiang and T. Rabczuk.
    Scientific Reports 5, 13228 (2015).
  3. Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations.
    Z. Fan, L.F.C. PEREIRA,  H.-Q. Wang, J.-C. Zheng, D. Donadio and A. Harju.
    Physical Review B 92, 094301 (2015).


  1. Length-dependent thermal conductivity in suspended single-layer graphene.
    X. Xu, L.F.C. PEREIRA, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae,  C.T. Bui, R. Xie,   J.T.L. Thong, B.H. Hong, K.P.  Loh, D. Donadio, B. Li and B. Ozyilmaz.
    Nature Communications 5, 3689 (2014).


  1. Divergence of the thermal conductivity in uniaxially strained graphene.
    L.F.C. PEREIRA and D. Donadio.
    Physical Review B 87, 125424 (2013). Editors’ Suggestion.
  2. Thermal conductivity of one-, two- and three-dimensional sp2 carbon.
    L.F.C. PEREIRA, I. Savic and D. Donadio.
    New Journal of Physics 15, 105019 (2013).


  1. Manipulating connectivity and electrical conductivity in metallic nanowire networks.
    P.N. Nirmalraj, A.T. Bellew, A.P. Bell, J.A. Fairfield, E.K. McCarthy, C. O’Kelly, L.F.C. PEREIRA, S. Sorel, D. Morosan, J.N. Coleman, M.S. Ferreira and J.J. Boland.
    Nano Letters 12, 5966 (2012).


  1. Electronic transport on carbon nanotube networks: a multiscale computational approach.
    L.F.C. PEREIRA and M.S. Ferreira.
    Nano Communication Networks 2, 25 (2011).


  1. A computationally efficient method for calculating the maximum conductance of disordered networks: Application to one-dimensional conductors.
    L.F.C. PEREIRA, C.G. Rocha, A. Latgé and M.S. Ferreira.
    Journal of Applied Physics 108, 103720 (2010).
  2. The phase diagram and critical behavior of the three-state majority-vote model.
    D.F.F Melo, L.F.C. PEREIRA and F.G.B. Moreira.
    Journal of Statistical Mechanics 11, P11032 (2010).


  1. Upper bound for the conductivity of nanotube networks.
    L.F.C. PEREIRA, C.G. Rocha, A. Latgé, J.N. Coleman and M.S. Ferreira.
    Applied Physics Letters 95, 123106 (2009).
    Research Highlight on Nature Nanotechnology (2 October 2009).


  1. The relationship between network morphology and conductivity in nanotube films.
    P.E. Lyons, S. De, F. Blighe, V. Nicolosi, L.F.C. PEREIRA, M.S. Ferreira and J.N. Coleman.
    Journal of Applied Physics 104, 044302 (2008).
  2. Unusual domain growth behavior in the compressible ising model.
    S.J. Mitchell, L.F.C. PEREIRA and D.P. Landau.
    Brazilian Journal of Physics 38, 1 (2008).


  1. Majority-vote model on random graphs.
    L.F.C. PEREIRA and F.G.B. Moreira.
    Physical Review E 71, 016123 (2005).