Publications

2020

  1. Diboron-Porphyrin monolayer: A new 2D semiconductor.
    R.M. Tromer, I.M. Felix, A. Freitas, S. Azevedo and L.F.C. PEREIRA
    Computational Materials Science 172, 109338 (2020).
  2. Thermoelectric properties of BiSbTe alloy nanofilms produced by DC sputtering: Experiments and modeling.
    A.A. Marinho, N.P. Costa, L.F.C. PEREIRA, F.A. Brito and C. Chesman
    Journal of Materials Science 552429 (2020).
  3. Suppression of coherent thermal transport in quasiperiodic graphene-hBN superlattice ribbons.
    I.M. Felix and L.F.C. PEREIRA
    Carbon 160, 335 (2020).
  4. Electronic, optical and thermoelectric properties of boron-doped Nitrogenated Holey Graphene.
    R.M. Tromer, A. Freitas, I.M. Felix, B. Mortazavi, L. D. Machado, S. Azevedo and L.F.C. PEREIRA
    Physical Chemistry Chemical Physics 22, 21147 (2020).

2019

  1. Dirac wave transmission in Lévy disordered systems.
    J.R.F. Lima, L.F.C. PEREIRA and A.L.R. Barbosa
    Physical Review E 99, 032118 (2019).
  2. Total entropy variation for an object in contact with heat reservoirs: the path to reversibility.
    L.R.D. Freitas and L.F.C. PEREIRA
    Revista Brasileira de Ensino de Física 41, e20180331 (2019).
  3. Outstanding strength, optical characteristics and thermal conductivity of graphene-like BC3 and BC6N semiconductors.
    B. Mortazavi, M. Shahrokhi, M. Raeisi, X. Zhuang, L.F.C. PEREIRA and T. Rabczuk
    Carbon 149, 733 (2019).

2018

  1. Tuning the Fano factor of graphene via Fermi velocity modulation.
    J.R.F. Lima, A.L.R. Barbosa, C.G. Bezerra and L.F.C. PEREIRA
    Physica E Low-dimensional Systems and Nanostructures 97, 105 (2018).
  2. Borophene hydride: a stiff 2D material with high thermal conductivity and attractive optical and electronic properties.
    B. Mortazavi, M. Makaremi, M. Shahrokhi, M. Raesi, C. Veer Singh, T. Rabczuk and L.F.C. PEREIRA
    Nanoscale 10, 3759 (2018).
  3. Thermal Conductivity of Graphene-hBN Superlattice Ribbons.
    I.M. Felix and L.F.C. PEREIRA
    Scientific Reports 8, 2737 (2018). TOP 100 IN PHYSICS 2018.
  4. BxCyNz Hybrid Graphenylene: Stability and Electronic Properties.
    A. Freitas, L.D. Machado, C.G. Bezerra, R.M. Tromer, L.F.C. PEREIRA and S. Azevedo
    RSC Advances 8, 24847 (2018).

2017

  1. Atomic adsorption on nitrogenated holey graphene.
    R.M. Tromer, M.G.E. da Luz, M.S. Ferreira and L.F.C. PEREIRA
    The Journal of Physical Chemistry C 121, 3055 (2017).
  2. Thermal conductivity decomposition in two-dimensional materials: Application to graphene.
    Z. Fan, L.F.C. PEREIRA, P. Hirvonen, M.M. Ervasti, K.R. Elder, D. Donadio, T. Ala-Nissila and A. Harju
    Physical Review B 95, 144309 (2017).
  3. Anomalous strain effect on the thermal conductivity of borophene: a reactive molecular dynamics study.
    B. Mortazavi, Minh-Quy Le, T. Rabczuk and L.F.C. PEREIRA
    Physica E Low-dimensional Systems and Nanostructures 93, 202 (2017).
  4. Electronic, optical and thermal properties of highly stretchable 2D carbon Ene-yne graphyne.
    B. Mortazavi, M. Shahrokhi, T. Rabczuk, L.F.C. PEREIRA
    Carbon 123, 344 (2017).
  5. Light propagation in quasiperiodic dieletric multilayers separated by graphene.
    C.H. Costa, L.F.C. PEREIRA, C.G. Bezerra
    Physical Review B 96, 125412 (2017).
  6. Bimodal grain-size scaling of thermal transport in polycrystalline graphene from large-scale molecular dynamics simulations.
    Z. Fan, P. Hirvonen, L.F.C. PEREIRA, M.M. Ervasti, K.R. Elder, D. Donadio, T. Ala-Nissila and A. Harju
    Nano Letters 17, 5919 (2017).

2016

  1. Amorphized graphene: a stiff material with low thermal conductivity.
    B. Mortazavi, Z. Fan, L.F.C. PEREIRA, A. Harju and T. Rabczuk
    Carbon 103, 318 (2016).
  2. Thermal conductivity and mechanical properties of nitrogenated holey graphene.
    B. Mortazavi, O. Rahaman, T. Rabczuk and L.F.C. PEREIRA
    Carbon 106, 1 (2016).
  3. Anisotropic thermal conductivity and mechanical properties of phagraphene: A molecular dynamics study.
    L.F.C. PEREIRA, B. Mortazavi, M. Makaremi and T. Rabczuk
    RSC Advances 6, 57773 (2016).
  4. Controlling resonant tunneling in graphene via Fermi velocity engineering.
    J.R.F. Lima, L.F.C. PEREIRA and C.G. Bezerra
    Journal of Applied Physics 119, 244301 (2016). Featured on the cover of the Journal of Applied Physics Volume 119, Issue 24, 28 June 2016.

2015

  1. Tuning thermal transport in ultra-thin silicon membranes by surface nanoscale engineering.
    S. Neogi, J.S. Reparaz, L.F.C. PEREIRA, B. Graczykowski, M.R. Wagner, M. Sledzinska, A. Shchepetov, M. Prunnila, J. Ahopelto, C.M. Sotomayor Torres and D. Donadio
    ACS Nano 9, 3820 (2015).
  2. Modelling heat conduction in polycrystalline hexagonal boron-nitride films.
    B. Mortazavi, L.F.C. PEREIRA, J.-W. Jiang and T. Rabczuk
    Scientific Reports 5, 13228 (2015).
  3. Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations.
    Z. Fan, L.F.C. PEREIRA,  H.-Q. Wang, J.-C. Zheng, D. Donadio and A. Harju
    Physical Review B 92, 094301 (2015).

2014

  1. Length-dependent thermal conductivity in suspended single-layer graphene.
    X. Xu, L.F.C. PEREIRA, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae,  C.T. Bui, R. Xie,   J.T.L. Thong, B.H. Hong, K.P.  Loh, D. Donadio, B. Li and B. Ozyilmaz
    Nature Communications 5, 3689 (2014).

2013

  1. Divergence of the thermal conductivity in uniaxially strained graphene.
    L.F.C. PEREIRA and D. Donadio
    Physical Review B 87, 125424 (2013). Editors’ Suggestion.
  2. Thermal conductivity of one-, two- and three-dimensional sp2 carbon.
    L.F.C. PEREIRA, I. Savic and D. Donadio
    New Journal of Physics 15, 105019 (2013).

2012

  1. Manipulating connectivity and electrical conductivity in metallic nanowire networks.
    P.N. Nirmalraj, A.T. Bellew, A.P. Bell, J.A. Fairfield, E.K. McCarthy, C. O’Kelly, L.F.C. PEREIRA, S. Sorel, D. Morosan, J.N. Coleman, M.S. Ferreira and J.J. Boland
    Nano Letters 12, 5966 (2012).

2011

  1. Electronic transport on carbon nanotube networks: a multiscale computational approach.
    L.F.C. PEREIRA and M.S. Ferreira
    Nano Communication Networks 2, 25 (2011).

Electronic Transport on Carbon Nanotube Networks: A Multiscale Computational Approach
Ph.D. thesis – Trinity College Dublin

2010

  1. A computationally efficient method for calculating the maximum conductance of disordered networks: Application to one-dimensional conductors.
    L.F.C. PEREIRA, C.G. Rocha, A. Latgé and M.S. Ferreira
    Journal of Applied Physics 108, 103720 (2010).
  2. The phase diagram and critical behavior of the three-state majority-vote model.
    D.F.F Melo, L.F.C. PEREIRA and F.G.B. Moreira
    Journal of Statistical Mechanics 11, P11032 (2010).

2009

  1. Upper bound for the conductivity of nanotube networks.
    L.F.C. PEREIRA, C.G. Rocha, A. Latgé, J.N. Coleman and M.S. Ferreira
    Applied Physics Letters 95, 123106 (2009).
    Research Highlight on Nature Nanotechnology (2 October 2009).

2008

  1. The relationship between network morphology and conductivity in nanotube films.
    P.E. Lyons, S. De, F. Blighe, V. Nicolosi, L.F.C. PEREIRA, M.S. Ferreira and J.N. Coleman
    Journal of Applied Physics 104, 044302 (2008).
  2. Unusual domain growth behavior in the compressible ising model.
    S.J. Mitchell, L.F.C. PEREIRA and D.P. Landau
    Brazilian Journal of Physics 38, 1 (2008).

2005

  1. Majority-vote model on random graphs.
    L.F.C. PEREIRA and F.G.B. Moreira
    Physical Review E 71, 016123 (2005).

Diagrama de fases e expoentes críticos do modelo do voto da maioria em grafos aleatórios
Master’s thesis – UFPE (in Portuguese)